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Efficient parsing

• Want to avoid problems of blind search:
• Avoid redoing analyses that are identical in more than one path of the search.

• Guide the analysis with both
• the actual input 

• the expectations that follow from the choice of a grammar rule.

• Combine strengths of both top-down and bottom-up methods.  
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• Main idea:
• Use data structures to maintain information: 

a chart and an agenda

• 'Agenda':
• List of constituents that need to be processed.

• 'Chart':
• Records (“memorizes”) work; obviates repetition.
• Related to:  Well-formed substring table (WFST); 

CKY parsing; 
Earley parsing; 
dynamic programming.

Chart parsing
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•Contents of chart:
1. Partially built constituents (also called active arcs).

Think of them as hypotheses.

2. Completed constituents (inactive arcs).

•Representation:  Labelled arc (edge) from one 
point in sentence to another (or same point).
• Directed; always left-to-right (or to self).
• Label is grammar rule used for arc.

Charts 1
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• Notation for positions in sentence from 0 to n (length of sentence):

• 0 The 1 kids 2 opened 3 the 4 box 5

From:  Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing in 
Python, v. 9.5.3, July 2008.  Used under Creative Commons licence.

Charts 2
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Part of a chart from the NLTK 
chart parser demo, 
nltk.app.chartparser()
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•An arc can connect any positions 𝑖, 𝑗
(0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛).

•You can have > 1 arc on any 𝑖, 𝑗.

•You can associate all arcs on positions 𝑖, 𝑗 with 
cell 𝑖𝑗 of upper-triangular matrix.

Charts 3



8

0     1     2     3     4     5     6     7

0     

1     

2     

3     

4     

5     

6     

7

The matrix for a seven-word sentence 
from the NLTK chart parser demo
nltk.app.chartparser()

Arcs in top right 
corner cell cover the 
whole sentence.

Those for S are 
‘parse edges'.
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• Notation:  ‘•’ means ‘complete to here’.
• A → X Y • Z (active)

‘In parsing an A, we’ve so far seen an X and a Y, 
and our A will be complete once we’ve seen a Z.’

• A → X Y Z • (inactive)
‘We have seen an X, a Y, and a Z, and hence completed 
the parse of an A.’

• A → • X Y Z (active)
‘In parsing an A, so far we haven’t seen anything.’

Notation for arc labels
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Part of a chart from the NLTK chart parser demo,
nltk.app.chartparser()
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• Arc extension:

Let X, Y, and Z be sequences of symbols, 
where X and Y are possibly empty.

If the chart contains an active arc from i to j of the form
A → X • B Y

and a completed arc from j to k of the form
B → Z •    or B → word

then add an arc from i to k
A → X B • Y

Fundamental rule of 
chart parsing



B → Z •A → X • B Y
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Adapted from:  Steven Bird, Ewan Klein, and Edward Loper, Natural Language 
Processing in Python, v. 9.5.3, July 2008.  Used under Creative Commons licence.

A → X B • Y

B → Z •
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•Arc addition (or prediction):

If the chart contains an completed arc from
i to j of the form

A → X •
and the grammar contains a rule

B → A Z
then add an arc from i to i (reflexive)

B → • A Z
or an arc B → A • Z from i to j.

Bottom-up arc-addition rule
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Adapted from:  Steven Bird, Ewan Klein, and Edward Loper, Natural Language 
Processing in Python, v. 9.5.3, July 2008.  Used under Creative Commons licence.

A → X •     

B → A • Z

B → • A Z
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• Initialize chart with each word in the input
sentence.

•Until nothing more happens:
• Apply the bottom-up addition rule wherever you can.
• Apply the fundamental rule wherever you can.

•Return the trees corresponding to the parse 
edges in the chart.

Bottom-up chart parsing
BKL’s view
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>>> nltk.app.chartparser()

Top-down Init Rule

Top-down 
Predict Rule

Bottom-up 
Left-Corner Strategy

Top-down Strategy

Bottom-up Strategy

Bottom-up Predict Rule

Bottom-up Left-Corner
Predict Rule

Fundamental Rule

Reset Parser
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• This cool thing builds all constituents exactly once.

• It never re-computes the prefix of an RHS.

• It exploits context-free nature of rules to reduce the search. How?

Observations
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•Doing everything you can is too uncontrolled.

•Try to avoid predictions and expansions that will 
lead nowhere, dummy.

•So use an agenda — a list of completed arcs.
• When an arc is completed, it is initially added to the 

agenda, not the chart.
• Agenda rules decide which completed arc to move 

to the chart next.
• E.g., treat agenda as stack or as queue; or pick item 

that looks “most efficient” or “most likely”; or pick 
NPs first; or ….

Controlling the process
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• Initialize agenda with the list of lexical categories
(Pos) of each word in the input sentence.

•Until agenda is empty, repeat:
–Move next constituent C from agenda to chart.
i. Find rules whose RHS starts with C and add 

corresponding active arcs to the chart.
ii. Find active arcs that continue with C and extend them; 

add the new active arcs to the chart.
iii. Find active arcs that have been completed; add their 

LHS as a new constituent to the agenda.

Bottom-up chart parsing
Jurafsky & Martin’s view
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INITIALIZE:
set Agenda = list of all possible categories of each input word 

(in order of input);
set n = length of input;
set Chart = ();

ITERATE:
loop

if Agenda = () then
if there is at least one S constituent from 0 to n then

return SUCCESS

else
return FAIL

end if
else …

Bottom-up chart parsing
Algorithm the first
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Set Ci,j = First(Agenda);   /* Remove first item from agenda. */
/* Ci,j is a completed constituent of type C from position i to position j */

Add Ci,j to Chart;

ARC UPDATE:
a. BOTTOM-UP ARC ADDITION (PREDICTION):

for each grammar rule X → C X1 … XN do
Add arc X → C • X1 … XN, from i to j, to Chart;

b. ARC EXTENSION (FUNDAMENTAL RULE):
for each arc X → X1 … • C … XN, from k to i, do

Add arc X → X1 … C • … XN, from k to j, to Chart;
c. ARC COMPLETION:

for each arc X → X1 … XN C • added in step (a) or step (b) do
Move completed constituent X to Agenda;

end if
end loop

Bottom-up chart parsing
Algorithm the second
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• It ignores useful top-down knowledge (rule contexts).

Problem with bottom-up
chart parsing
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>>> nltk.app.chartparser()

Add lexical ambiguity to defaults:
N → saw
V → dog
NP → N

Parse bottom-up:
the dog saw John
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•Same as bottom-up, except new arcs are added 
to chart only if they are based on predictions 
from existing arcs.

• Initialize chart with unstarted active arcs for S.
S → • X Y    
S → • Z Q

•Whenever an active arc is added, also add 
unstarted arcs for its next needed constituent.

Top-down chart parsing
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>>> nltk.app.chartparser()

Add lexical ambiguity to defaults:
N → saw
V → dog
NP → N

Parse top-down:
the dog saw John
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INITIALIZE:
set Agenda = list of all possible categories of each input word 

(in order of input);
set n = length of input;
set Chart = ();
for each grammar rule S → X1 … XN do

Add arc S → • X1 … XN to Chart at position 0;
apply TOP-DOWN ARC ADDITION [step (a’) below] to the new arc;

end for

ITERATE:
loop

if Agenda = () then
if there is at least one S constituent from 0 to n then

return SUCCESS

else
return FAIL

end if
else …

Top-down chart parsing
Algorithm the first
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Set Ci,j = First(Agenda);   /* Remove first item from agenda. */
/* Ci,j is a completed constituent of type C from position i to position j */

Add Ci,j to Chart;

ARC UPDATE:
b. ARC EXTENSION (FUNDAMENTAL RULE):

for each arc X → X1 … • C … XN, from k to i, do
Add arc X → X1 … C • … XN, from k to j, to Chart;

a’. TOP-DOWN ARC ADDITION (PREDICTION):  
/* Recursive: until no new arcs can be added */

for each arc X → X1 … • XL … XN, from k to j, added in 
step (b) or (a’), do

Add arc XL → • Y1 … YM, from j to j, to Chart;
c. ARC COMPLETION:

for each arc X → X1 … XN C • added in step (b) do
Move completed constituent X to Agenda;

end if
end loop

Top-down chart parsing
Algorithm the second
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•Chart parsing separates:
1.Policy for selecting constituent from agenda;
2.Policy for adding new arcs to chart;
3.Policy for initializing chart and agenda.

•“Top-down” and “bottom-up” now refer to 
arc-addition rule.
• Initialization rule gives bottom-up aspect in 

either case.

•Polynomial algorithm (θ(n3)), instead of 
exponential.

Notes on chart parsing
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