
Computational
Linguistics

3

3. Chart parsing

Frank Rudzicz
Toronto Rehabilitation Institute-UHN; and
Department of Computer Science, University of Toronto

CSC 2501 / 485
Fall 2015

Reading: Jurafsky & Martin: 13.3–4.
Allen: 3.4, 3.6.
Bird et al.: 8.4, online extras 8.2 to end of

section “Chart Parsing in NLTK”.
Copyright © 2015 Frank Rudzicz,

Graeme Hirst, and Suzanne
Stevenson. All rights reserved.

2

Efficient parsing

• Want to avoid problems of blind search:
• Avoid redoing analyses that are identical in more than one path of the search.

• Guide the analysis with both
• the actual input

• the expectations that follow from the choice of a grammar rule.

• Combine strengths of both top-down and bottom-up methods.

3

• Main idea:
• Use data structures to maintain information:

a chart and an agenda

• 'Agenda':
• List of constituents that need to be processed.

• 'Chart':
• Records (“memorizes”) work; obviates repetition.
• Related to: Well-formed substring table (WFST);

CKY parsing;
Earley parsing;
dynamic programming.

Chart parsing

4

•Contents of chart:
1. Partially built constituents (also called active arcs).

Think of them as hypotheses.

2. Completed constituents (inactive arcs).

•Representation: Labelled arc (edge) from one
point in sentence to another (or same point).
• Directed; always left-to-right (or to self).
• Label is grammar rule used for arc.

Charts 1

5

• Notation for positions in sentence from 0 to n (length of sentence):

• 0 The 1 kids 2 opened 3 the 4 box 5

From: Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing in
Python, v. 9.5.3, July 2008. Used under Creative Commons licence.

Charts 2

6

Part of a chart from the NLTK
chart parser demo,
nltk.app.chartparser()

7

•An arc can connect any positions 𝑖, 𝑗
(0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛).

•You can have > 1 arc on any 𝑖, 𝑗.

•You can associate all arcs on positions 𝑖, 𝑗 with
cell 𝑖𝑗 of upper-triangular matrix.

Charts 3

8

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

The matrix for a seven-word sentence
from the NLTK chart parser demo
nltk.app.chartparser()

Arcs in top right
corner cell cover the
whole sentence.

Those for S are
‘parse edges'.

9

• Notation: ‘•’ means ‘complete to here’.
• A → X Y • Z (active)

‘In parsing an A, we’ve so far seen an X and a Y,
and our A will be complete once we’ve seen a Z.’

• A → X Y Z • (inactive)
‘We have seen an X, a Y, and a Z, and hence completed
the parse of an A.’

• A → • X Y Z (active)
‘In parsing an A, so far we haven’t seen anything.’

Notation for arc labels

10

Fr
o

m
:

S
te

ve
n

 B
ir

d
, E

w
an

 K
le

in
, a

n
d

 E
d

w
ar

d
 L

o
p

e
r,

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 in

P
yt

h
o

n
, v

. 9
.5

.3
, J

u
ly

 2
0

0
8

.
U

se
d

 u
n

d
e

r
C

re
at

iv
e

 C
o

m
m

o
n

s
lic

e
n

ce
.

VP → V NP •

VP → V • NP

11

Part of a chart from the NLTK chart parser demo,
nltk.app.chartparser()

12

• Arc extension:

Let X, Y, and Z be sequences of symbols,
where X and Y are possibly empty.

If the chart contains an active arc from i to j of the form
A → X • B Y

and a completed arc from j to k of the form
B → Z • or B → word

then add an arc from i to k
A → X B • Y

Fundamental rule of
chart parsing

B → Z •A → X • B Y

13
Adapted from: Steven Bird, Ewan Klein, and Edward Loper, Natural Language
Processing in Python, v. 9.5.3, July 2008. Used under Creative Commons licence.

A → X B • Y

B → Z •

14

•Arc addition (or prediction):

If the chart contains an completed arc from
i to j of the form

A → X •
and the grammar contains a rule

B → A Z
then add an arc from i to i (reflexive)

B → • A Z
or an arc B → A • Z from i to j.

Bottom-up arc-addition rule

15
Adapted from: Steven Bird, Ewan Klein, and Edward Loper, Natural Language
Processing in Python, v. 9.5.3, July 2008. Used under Creative Commons licence.

A → X •

B → A • Z

B → • A Z

16

• Initialize chart with each word in the input
sentence.

•Until nothing more happens:
• Apply the bottom-up addition rule wherever you can.
• Apply the fundamental rule wherever you can.

•Return the trees corresponding to the parse
edges in the chart.

Bottom-up chart parsing
BKL’s view

17

>>> nltk.app.chartparser()

Top-down Init Rule

Top-down
Predict Rule

Bottom-up
Left-Corner Strategy

Top-down Strategy

Bottom-up Strategy

Bottom-up Predict Rule

Bottom-up Left-Corner
Predict Rule

Fundamental Rule

Reset Parser

18

• This cool thing builds all constituents exactly once.

• It never re-computes the prefix of an RHS.

• It exploits context-free nature of rules to reduce the search. How?

Observations

19

•Doing everything you can is too uncontrolled.

•Try to avoid predictions and expansions that will
lead nowhere, dummy.

•So use an agenda — a list of completed arcs.
• When an arc is completed, it is initially added to the

agenda, not the chart.
• Agenda rules decide which completed arc to move

to the chart next.
• E.g., treat agenda as stack or as queue; or pick item

that looks “most efficient” or “most likely”; or pick
NPs first; or ….

Controlling the process

20

• Initialize agenda with the list of lexical categories
(Pos) of each word in the input sentence.

•Until agenda is empty, repeat:
–Move next constituent C from agenda to chart.
i. Find rules whose RHS starts with C and add

corresponding active arcs to the chart.
ii. Find active arcs that continue with C and extend them;

add the new active arcs to the chart.
iii. Find active arcs that have been completed; add their

LHS as a new constituent to the agenda.

Bottom-up chart parsing
Jurafsky & Martin’s view

21

INITIALIZE:
set Agenda = list of all possible categories of each input word

(in order of input);
set n = length of input;
set Chart = ();

ITERATE:
loop

if Agenda = () then
if there is at least one S constituent from 0 to n then

return SUCCESS

else
return FAIL

end if
else …

Bottom-up chart parsing
Algorithm the first

22

Set Ci,j = First(Agenda); /* Remove first item from agenda. */
/* Ci,j is a completed constituent of type C from position i to position j */

Add Ci,j to Chart;

ARC UPDATE:
a. BOTTOM-UP ARC ADDITION (PREDICTION):

for each grammar rule X → C X1 … XN do
Add arc X → C • X1 … XN, from i to j, to Chart;

b. ARC EXTENSION (FUNDAMENTAL RULE):
for each arc X → X1 … • C … XN, from k to i, do

Add arc X → X1 … C • … XN, from k to j, to Chart;
c. ARC COMPLETION:

for each arc X → X1 … XN C • added in step (a) or step (b) do
Move completed constituent X to Agenda;

end if
end loop

Bottom-up chart parsing
Algorithm the second

23

• It ignores useful top-down knowledge (rule contexts).

Problem with bottom-up
chart parsing

24

>>> nltk.app.chartparser()

Add lexical ambiguity to defaults:
N → saw
V → dog
NP → N

Parse bottom-up:
the dog saw John

25

•Same as bottom-up, except new arcs are added
to chart only if they are based on predictions
from existing arcs.

• Initialize chart with unstarted active arcs for S.
S → • X Y
S → • Z Q

•Whenever an active arc is added, also add
unstarted arcs for its next needed constituent.

Top-down chart parsing

26

>>> nltk.app.chartparser()

Add lexical ambiguity to defaults:
N → saw
V → dog
NP → N

Parse top-down:
the dog saw John

27

INITIALIZE:
set Agenda = list of all possible categories of each input word

(in order of input);
set n = length of input;
set Chart = ();
for each grammar rule S → X1 … XN do

Add arc S → • X1 … XN to Chart at position 0;
apply TOP-DOWN ARC ADDITION [step (a’) below] to the new arc;

end for

ITERATE:
loop

if Agenda = () then
if there is at least one S constituent from 0 to n then

return SUCCESS

else
return FAIL

end if
else …

Top-down chart parsing
Algorithm the first

28

Set Ci,j = First(Agenda); /* Remove first item from agenda. */
/* Ci,j is a completed constituent of type C from position i to position j */

Add Ci,j to Chart;

ARC UPDATE:
b. ARC EXTENSION (FUNDAMENTAL RULE):

for each arc X → X1 … • C … XN, from k to i, do
Add arc X → X1 … C • … XN, from k to j, to Chart;

a’. TOP-DOWN ARC ADDITION (PREDICTION):
/* Recursive: until no new arcs can be added */

for each arc X → X1 … • XL … XN, from k to j, added in
step (b) or (a’), do

Add arc XL → • Y1 … YM, from j to j, to Chart;
c. ARC COMPLETION:

for each arc X → X1 … XN C • added in step (b) do
Move completed constituent X to Agenda;

end if
end loop

Top-down chart parsing
Algorithm the second

29

•Chart parsing separates:
1.Policy for selecting constituent from agenda;
2.Policy for adding new arcs to chart;
3.Policy for initializing chart and agenda.

•“Top-down” and “bottom-up” now refer to
arc-addition rule.
• Initialization rule gives bottom-up aspect in

either case.

•Polynomial algorithm (θ(n3)), instead of
exponential.

Notes on chart parsing

31

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

32

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

33

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

34

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

35

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

36

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

37

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

38

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

39

Agenda

Grammar

C
h
art: C

o
m

p
leted

 arcs C
h
art: A

ctiv
e arcs

